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I NTRODUCTI ON

V The adaptive, fixed interval smoother uses raw cartesian data input, x(ti),

Y(ti) , z(ti) for ti = t1, t2 9 - - -, tf, where t, is the first measurement

time and tf is the final trajectory measurement time, to produce smooth

estimates of the trajectory states, position, velocity, and acceleration.

In contrast to other smoothers the fixed interval smoother uses the measure-

ments at all trajectory measurement times to estimate the trajectory states

at each measurement time. Thus, in a sense one could say that the smoothing

interval is the total trajectory time. The fixed interval smoother is based

on the modified Bryson-Frazier formulation, denoted by m8F, which was develop-

ed by Bierman in [I] The mEF development of the fixed interval smoother

combines a forward running Kalman filter with a backward adjoint filter which

uses the Kalman filter residuals as input and also uses other Kalman filter

computed quantities. The m F smoother is a very stable, computationally

efficient form of the fixed interval smoother.

The fixed inlterval smoother is made adaptive by adapting the forward Kalman

filter to the local noise content of the raw position data and also adapting

the filter to acceleration changes which are sensed in the future meas,rements.

The Kalman filter is initialized with least squares state estimates at the

desired start time and again after any large time break in the measurement

sequence. The smoothing program expects that the cartesian measurement input

has been preprocessed to the extent that it is free from wild observations.

The smoother outputs trajectory position, velocity, and acceleration and esti-

mates of the errors associated with these quantities. The trajectory states

and their error estimates can be further processed by an output routine to

, '.. .



rotate and translate the states to a desired coordinate syster and origin, to

compute quantit6ies derivable from cartesian position, velocity, and accelera-

K tion, to combine the trajectory states with atmospheric measurerents, and to

reformat the output.

T"AJECTCPY AJC EASUREOICIT 'tnDE LS

Let s(t) be a 3-vector which represernts any of the three coordinates of the

trajectory, i.e., s x . or S y, or s z.

Assume that each coordinate of the trajectory obeys the discrete time dynamic

state equation

5(k + k () s~tk) + Y(Ak)u, 1

where 6 k =tk + t k* t C. k() is the second order transition matrix

[i 'k k]

* (2)

0 0 1

o.
, rotais an unnonnsat scaar forcdeired fuctiornaete and oriin ithve to

T ~ k/ ,2Z k (3)

Let m(t.) denote the position measurement available to the smoother. m(t1 ) is

aim represented as

M(t1) - H4s(t 1 ) + e(ti), (4)

where H 100 and e(t1 ) is a zero mean measurement error with variance R(t).

t
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Kfl FILTEj'

Let SA(k/k) and S^'k/k-l) denote the filtered and predicted state estimates at

time tk Also, let P(k/k) and P(k/k-l) denote the covariance matrices of the

V.filtered and predicted state estimates at time tkV The state estimates and

their covariances are determined by the usual Kalman filter equations,

s(k+l/k) 4 e)(Ak)s(k/k)(5

P(k+l/k) = (Lk)P(k/k)( (A + q(k)y(L )y(L~) 6

P(k+l/k+l) = P(k+l/k) - P(k+l/k)H T(HP(k+l/k)H T + IRCtk ))1IHPk+l/k) (7)

ios~+11,I)= ^(k+I/) Pk~/kI) '-1tk+l)( k+l) - Hs(k+l/k)) (8)

The filter equations given in (5) - (8) are not implemented directly, but are

implemented in a square root form. Let the covariance matrix P(k/k) be repre-

sented as P(k/k) a U(k/k)D(k/k)U T(k/k) where U(k/k) is unit upper triangular

and D(k/k) is diagonal with positive diagonal elements. Also, P(k+l/k)

TU(kel/k)D.(k+l/k)U (k+l/k). The measurement noise variance, R(t k) in the fil-

ter equations represents the noise variance in the vicinity of time t k. q(k)

is a scalar -representing the uncertainty of the unknown forcing term, u.

At a time update the upper triangular factor U and diagonal factor C. of the

L. predicted covariance matrix are updated rather than computing an updated

covariance, P(k~l/k). The updated U-tC factors U(k+l/k) and D(k+l/k) are

obtained via the "gee - Turner matrix factorization algorithm given in

Appendix A and described by Bierman in C£2). Thus, after a time update,

we have the predicted state estimate computed from (5) and the L'-L factors

U(k+l/k) and D(k+l/k) such that P(ksl/k) - U(k+l/k) D(k+l/k) UT(k+l/k). If

U(k/k) and D(k/k) are the U-D factors of P(k/k), then the U-D factors of the



- '... -

product 4(L )P(k/k) T (Lk) in (6) are (since 4(L k) is upper triangular),

U = 1(k)U(k/k) (9)

and

* D = D(k/k) (10)

The U-D factors of P(k+l/k) are obtained via the algorithm of Appendix A using

the U-D factors given in (9) and (10).

At a measurement update the state estimate E(k+I/k+l) is computed from (8).

The U-D factors, U(k+l/k+l) and D(k+l/k+l), of P(k+l/k~l) are computed by noting

that P(k+1/k+l) given by (7) is the sum of a positive definite matrix P(k+l/k),

T
whose U-D factors are available, and a symmetric dyad c-uu where

C =(HP(k+l/k)HT + R(tk)) is a scalar and U = P(k+l/k)H T is a 3-vector. The

algorithm of Appendix A could be used to compute U(k+l/k+l) and '(k+l/k+l),

However, the negative value of c presents some potential problems in using this

. algorithm so that we will use the algorithm of Appendix B to obtain the U-D

factors of P(k+l/k+l). The algorithm of Appendix B exploits the special struc-
mT

.c ture of c.uuT to compute the updated U-D factors more accurately than the algor-

* : ithm of Appendix A.

I'ITIALIZATION OF THE KALAV FILTER

At the beginning of the measurement sequence and at the end of large time

breaks in the measurement sequence initial values of the position, velocity,

and acceleration states and the U-0 factors of their covariance matrix must be

supplied to the Kalman filter. The quantities required for initialization of

S... the Kalman filter are obtained by least squares estimation over the first IN,

data points. Thus, if t1 is the time of initialization, the estimate '(I/I)

4'

LC
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used to initialize the filter is obtained by minimizing,

with respect to s(t 6,.e least squares estimate is given by,

) Z 4'(1-t Tr (t) 12)

where P is given by,

The covariance matrix of 6(111) is calculated from,

p(1/1) = p 2

where -2 is obtained from the least squares residuals as ,

. (m:) ' =(t i-tl)m t l (14)

s

The U-0 factors of P(1/1) are obtained via the Cholesky decomposition algorithm

given in Appendix C.

At the present time is target dependent as in Table 1. In Table I T is the

F. sampling period of the measurements.

r.-.



TABLE 1

TAIRCET CPATECORPY s

Aircraft - no maneuver max (20,1.5/T)

Aircraft - maneuver max (20,1/T)

Ground Target max (20,2/T)

Low Altitude - no maneuver max (20.2/T)

Low Altitude - maneuver max (20,1/T)

Helicopter max (20,1.5/T)

Low Acceleration missile max (20,1.5/T)
High Acceleration missile max (20,1/,r)

Also, IN t< 50.

MEASIJRE!IT NOISE COVXRIANCE

The measurement noise variance R(tk) used in the Kalman filter is computed

from past predicted filter residuals. Let E (k-p+2/k-p+l), p 1,lP be the P

predicted states preceding t,,, R(tK is computed from

Rt) z l m~ - k-2/pl (16)
p=1

Presently, P a 20.

STATE NOISE COVARIANCE

The state noise covariance for the Kalmian filter should measure the uncertainty

about the assumption of constant acceleration. Thus, it is realistic to choose

q to measure the rate of change of acceleration. We could do this by differ-

encing the filtered acceleration, s3 k/) However, to obtain a quicker re-

Lspo' e, we have chosen to estimate a smoothed acceleration,, s3 (k) and differ-

ei~ce this quantity. Let S q(k) be a 3-vector of position, velocity, and

.6 '. ..



acceleration and be the value of s(tk) which m~inim~izes

kwhere k+i k+i k 17
0 wer T is an average measurement noise variance over the interval (t t )

[*inimizing (17) with respect tc s(tk) results in the smoother equation

* -1(k)=s(k/k)+pq(k)< ~T(t -t ) H Tmt )-H4,(tk~ ~t k/ (18)

In (IC) p(k) is the covariance matrix of ~(k),

The corputation of~ is described in Appendix D.

The rate of change of acceleration used in estimating q is computed by differ-

encing the smoothed acceleration siq(k). Thus, we compute
3

~(k) =(20)

tk tkW

Rather than use i(k) V /~k), it is much better to smooth the sequence, i(k),

- with a fadinn memory filter and use the smooth filter output to compute V qFT.
Thus, we estimate al(k) to minimize

k-2 WI(1

1-0

where U~wSl. The resulting steady state filter equation for a1(k), obtained by

minimizing (21) and then finding the limiting steady state result is



i(k+l) = i(k) + (l-,)((k+l)-1(k)) (22)

Then V q(k) = aIk).

,. .The weight used in (22) is target dependent. The weights for various categor-

L ies of targets are given in Table 2. The values of W' in this table have not

been optimized in any way but have yielded good performance on data from the

various target types. These values may be updated on the basis of future exper-

ience. An absolute upper limit, Q which is also target dependent, has been%U

placed on [ q ). This limit, while seldom reached, is necessary to prevent

the Kal-an filter from responding violently to occasional bad data (not spikes)

situations. The values of Q are also given in Table 2. The values of W given

table 2 are for a sample rate of 20/sec. The values of W to be used for other

- sample rates are calculated in the program from the table values in the follow-

in, -ay. Let W',, be the table value (20/s value) for a given target type and

let '.i be the value to be used at the actual sampling period, T. Then

lo 0W = (- ) log I O. (23)

TABLE 2": '. ' . . . 1 - W Q U

TA; GET CATEGORY x y z x y z

Aircraft - no maneuver .05 .05 .05 50 50 50

Aircraft- maneuver .13 .13 .13 500 500 500

C-round Target .05 .C5 .05 20 20 20

Low Altitude - no maneuver .05 .05 .05 50 50 50

Low Altitude - maneuver .13 .13 .05 200 200 50

Helicopter .05 .05 .05 50 50 50

Low Acceleration missile .13 .13 .13 200 200 200

High Acceleration missile .25 .25 .25 5000 5000 5000

A---



Prescrtly, the look interval for state noise adaption is given by K = max
-U (23,I,5/T), vher3 T is sabmpling interval of the measurements. 'Aso, N ,5C.

q

THE AJCINT FILTE

The adjoint filter is a iI'lran like filter running backwards in time vhich uses

the Kalman filter residuals as input and also uses the Kalman filter gain vector.

The optimral fixed interval smoother estimates are obtained by properly combining

the Kalman filter states kwith the adjoint filter states. Let (k-!/k) and

-(k/k) be the predicted and filtered state vectors 13-vectors) of the adjoint

filter. Also, let A(k-l/k) and A(k/k) be the covariance matrices of the pre-

dicted and filtered adjoint state vectors. The equations governing the adjoint

S:.i state vectors and their covariances are given by:

,(k/k+l) = 0,T (Ak) (k+l/k+l) (24)

A(k/k+l) - 4T (Ak)A(k+I/k+l) (Ak), (25)

-(k/k) - )(k/k+l) - h1TDl (r(k/k -l)+0k , K(k/k+l)), (26)

3 A(k/k) = (I-KkH)T A(k/k+l)I KkH)+H TDl I. (27)

In the above equations r(k/k-l) is the predicted Kalran filter residual,

r(k/k-l) = m(tk)-H'(k/k-l), (28)

D is the covariance of this predicted residual,

T
SDk FHP(k/k-I)H +n(tk) (29)

and Kkis the Kalman filter gain vector,

. -T I
Kk - P(k/k-l)i Dk (30)

In contrast to the Kalman filter the equations of the adjoint filter are imple-

mented directly rather than using a matrix square root implementation.

a1
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The adjoint filter is initialized at the final trajectory time, t.., and at

the end of any measurement sequence preceeding a large time break. The ad-

joint filter is initialized by,

X -H " r( N/ - l) (31)

S IT I (%32)

CPTWAL" S5OCOTHED ESMTITES

- . . The optimal, fixed interval smoothed esti.ates are obtained by combining the

* states of the Kalman filter with the states of the adjoint filter. P.ssuming

F trajectory state estimates are desired only at the measurement times, the

smoothed estimates are computed from,

s(k) = s'(k/k) - P(k/k)I(k/k+l) (33)

and the covariance of this estimate can be computed from (if desired for out-

put),

P(k) = P(k/k) - P(k/k)/A(k/k+l)P(k/k) (34)

m1



K APPE:NNX

The matrix factorization algorithm described below for obtair.in-- the 'J-D' fac-

* *.*tors of a positive definite matrix plus a symmetric dyad was first reported in

3j and later described by Bier.ian in r 2.

*Given a positive definite matrix P, a vector V, and a scalar c, we form the

matrix P

*Suppose we have a unit upper triangular matrix U and a positive diagonal

matrix 0 such that P =U .An algorithm for computing the U-C factors,

U and D, of P is given by the following sequence of steps,

*.D(I) CI ) + c 1b
2 (I)

V(K) =VtY.) - V(i) U(Y. 1

-. cV(I) Kl1

u(KI) + - V(K) I=W

* cD(I)

* In the above algorithm the symbol represents tne FOR~TRAN replacement

equality. Niote that the computation of the U-D factors can be done in

place with the D(I) stored along the diagonal of U.



:.I' i APPE.,DI'- X S

The follov.'ing algorithm is taken from Bierman [ 27, p77. This algorithm comr-

putes the U-E factors of the posterior Kalman filter covariance matrix,

, P(k+l/k+l) = P.

A - T'

P = P - PHT(IIPH + R) I.P Wgl)

Let U and D be the U-D fa'ctors of P,

P D ..U' (B2)

Let f, v, and gj be N-vectors

I ~ ~ f : ,TH T

I: . v DfTT

3 i 1 a v(l)f(l) + P. T (V(l)O---O)

0(1) = D(1)R/a l

j = a. 1 + v(J)f(J)

D(J) = D(J) a

, U(K,J) - U(K,J) - f(J)Sj()/aj. 1  J-2,N
; -. Ll,

gO+l(K) - gj(K) + v(J)U(K,J)

; ,-. The vector gN~i/o 1 will be the Kalman filter gain. The computaticn of U and 0

can be done in place, if desired.

12
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APPENDI X C

The alorith, presented below obtains the U-C factors of the positive de-

finite, m. atrix P, P UCU T  where U is upper triangular and C, is a pos-

itive diagonal atrix.

W) , ,oa m(at,:'.

UCK/N) = P(K,IN)/D(N), K-1, N-1

iN

DCI) * P(I,I)- E U2 (I,K)D(IK), I=N-l,l
K=I+I

U(K,I) * (P(K,I) - . U(K,L)D(L)U(I,L))/D(I),K1I, I-1, I=N-l,2
L=K+l

1

U

~I

;. 13

L
. . . .



The average noise variance, RK. over the interval (t k9 tk+t ) is computed by
*fittingj a quadratic curve to the measurements in the interval and then letting

PK be the variance of the measurement residuals from the fit. Consider the

* quadratic model,

M(t k~i a + b(t k~i t k + c(t k+i-tk)21 i-1, Nq

*Let a, b, c be the least squares estimates of a, b, c. The residuals from,

* this fit are

i

6(k+i) £mt - 5 (tk ~ 'tk ~ t~t) 2. 1,

*The noise variance R Kused is computed by

[.q

Z 62

F: K 7 N-7 i k~l

L i

I. -This aveaue nis ued oan e, if ' ove h if tra N<0 (t tk+) is sed te.b

* 14
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